高级检索

基于大语言模型的自动化渗透测试研究

Automated penetration testing based on large language models

  • 摘要: 随着网络攻击手段的持续演进,自动化渗透测试作为系统脆弱性评估的重要技术手段,在实践中面临环境动态性强、反馈稀疏、路径构建复杂和防御策略多变等挑战。近年来,大语言模型(large language models, LLMs)在自然语言理解、上下文推理与多轮任务规划方面展现出显著能力,为构建智能化渗透测试体系提供了新的技术路径。为此,围绕自动化渗透测试的典型流程,系统梳理当前面临的四类关键挑战,并从环境建模、策略探索、路径生成与防御适应4个维度,综述了LLMs在支撑自动化渗透任务中的典型方法与关键进展。研究表明,LLMs具备较强的上下文感知、因果推理与动态调整能力,可有效提升自动化渗透系统的环境适应能力与策略生成智能水平。最后,展望了未来基于LLMs的渗透测试系统在多模态融合、目标驱动推理、自适应安全测试与系统可信性保障等方向的发展潜力,旨在为智能攻防技术的发展提供结构化的研究梳理与技术参考。

     

    Abstract: With the continuous evolution of cyberattack techniques, automated penetration testing—an essential approach for assessing system vulnerabilities—faces significant challenges, including dynamic network environments, sparse feedback signals, complex multi-stage attack planning, and adaptive defense mechanisms. In recent years, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding, contextual reasoning, and multi-step task planning, offering new opportunities for building intelligent penetration testing systems. This paper systematically analyzes four major challenges in automated penetration testing and reviews representative LLM-powered solutions across four key aspects: dynamic environment modeling, strategy optimization under sparse rewards, causal multi-stage path reasoning, and adaptive planning against evolving defenses. The findings show that LLMs exhibit promising context-awareness, causal inference, and behavioral adaptability, significantly enhancing the intelligence and robustness of automated testing frameworks. Finally, this paper outlines future directions for LLM-enabled penetration testing, including multi-modal integration, goal-driven attack reasoning, adaptive security evaluation, and trustworthy system design, providing theoretical guidance and technical reference for the next generation of intelligent red teaming systems.

     

/

返回文章
返回