高级检索

神经拟态类脑计算芯片进展与趋势:以达尔文类脑芯片为例

Advances and Trends in Neuromorphic Computing Chips: A Case Study of the Darwin Series

  • 摘要: 传统冯·诺依曼架构面临显著的“存储墙”与“功耗墙”瓶颈问题,而神经拟态类脑计算通过模拟生物神经网络的拓扑结构与信息处理机制、构建存储与计算融合的一体化架构,支持异步事件驱动的稀疏化计算与通信机制,为突破传统计算范式局限、实现高能效通用智能提供了创新性的技术路径。本研究系统梳理了神经拟态类脑计算芯片的技术发展,重点剖析了浙江大学达尔文系列芯片(尤其是达尔文3代)在架构设计层面的创新突破,并展望了该领域的发展趋势。

     

    Abstract: The traditional von Neumann architecture faces significant bottlenecks known as the “memory wall” and “power wall”. In contrast, neuromorphic computing, by emulating the topological structure and information processing mechanisms of biological neural networks, constructs an integrated architecture that fuses memory and computation. This approach supports an event-driven sparse computing and communication mechanisms, providing an innovative technological pathway to overcome the limitations of conventional computing paradigms and achieve energy-efficient general-purpose intelligence. This article systematically reviews the technological advancements in neuromorphic computing chips, with particular emphasis on analyzing the innovative architectural breakthroughs in Zhejiang University’s Darwin series chips (especially Darwin 3). Furthermore, it provides insights into future development trends in this field.

     

/

返回文章
返回