高级检索

认知工程:生成式人工智能的第二幕

Cognition Engineering: The Second Act of Generative Artificial Intelligence

  • 摘要: 生成式人工智能(generative artificial intelligence, GenAI)正迎来发展历程中的关键转折点,从第一幕“知识工程”时代(2020—2023年)迈向第二幕“认知工程”时代(2024年至今)。本研究系统分析了这一范式转变的理论基础、技术路径及其深远影响。研究表明,第一幕AI主要通过预训练和微调实现知识存储与检索,在基础任务上表现优异但存在深度思考能力有限的瓶颈。第二幕实现了关键突破:AI首次具备真正的深度思考能力,能够进行从1 min~1 000 h的持续复杂推理,将大模型从知识管理工具提升为认知管理工具。这一转变建立在三大技术支柱之上:知识基础的质变、测试时扩展技术的成熟以及自我训练技术的突破。在此基础上,第二幕生成式AI呈现五大关键特性:极致的数据高效性、预训练与强化学习的协同设计、认知数据挖掘成为核心能力、向真实世界复杂问题的全面挑战以及交互式智能范式的确立。数据工程经历了从1.0到2.0的根本性演变,“旅程学习”取代了“捷径学习”,使模型能够学习包含反思、纠错和回溯的完整决策过程。认知工程的兴起不仅改变了AI技术发展路径,更将重构人机协作模式,为解决人类最复杂的问题提供全新途径。

     

    Abstract: Generative artificial intelligence (GenAI) is moving from “Knowledge Engineering” (2020–2023) to “Cognition Engineering” (since 2024). We examine what drives this shift and what it makes possible. First-act models relied on pre-training and fine-tuning to store and retrieve knowledge; they handled routine tasks but struggled with sustained reasoning. The second act marks a step change: models can reason for long periods—from minutes to hundreds of hours—and function as cognitive tools rather than databases. Three factors underlie this change: better, reasoning-dense data; test-time scaling methods; and advances in self-training. We identify five consequences: greater data efficiency; tighter coupling of pre-training and reinforcement learning; a focus on mining cognitive data; stronger performance on complex, real-world tasks; and interaction as a default mode of intelligence. Data engineering also shifts: “journey learning” replaces “shortcut learning,” capturing full decision paths with reflection, error correction, and backtracking. These changes reshape human-AI collaboration and open new ways to tackle difficult problems.

     

/

返回文章
返回