高级检索

深度思考模型带来的人工智能基础设施挑战与机遇

The Challenges and Opportunities of Deep Thinking Models for Artificial Intelligence Infrastructure

  • 摘要: 近年来,随着“缩放法则”带来的性能增益趋于减缓,研究者提出深度思考模型(reasoning model)新范式,通过延长上下文和链式思考路径提升智能表现。然而,这一升级也对人工智能(artificial intelligence, AI)基础设施提出了前所未有的挑战:训练阶段需要支持更长序列、更多阶段的分布式并行与强化学习后训练流程;推理阶段则因超长输入输出和键值(key value, KV)缓存激增导致算力、显存和带宽压力倍增。为此,业界在训练中综合应用张量并行、流水线并行、专家并行与序列并行,并通过 DualPipe 等改进掩盖通信延迟;在推理中提出“以存换算”架构,如 Mooncake架构的预填充阶段/解码计算密集阶段/解码注意力阶段(简称prefill/model/attention)异构分离,以及 KTransformers 的计算强度导向卸载策略,实现存储与计算资源的异构协同。最后,面向未来,通过稀疏注意力机制(如 MoBA、NSA)以降低长序列的 O\left(n^2\right) 复杂度,为深度思考模型的下一步基础设施适配提供了新的思路。本研究梳理了代表性案例与技术路径,为行业在算法与系统协同优化上提供参考。

     

    Abstract: In recent years, the diminishing returns of the “Scaling Law” have prompted the emergence of Reasoning Models, which enhance intelligence by extending context windows and enabling chain-of-thought inference. However, these deep reasoning models impose unprecedented demands on artificial intelligence infrastructure: the training phase must support longer sequences, multi-stage distributed parallelism, and RLHF workflows; the inference phase faces explosive growth in computation, memory, and bandwidth due to ultra-long inputs, outputs, and KV cache. To address these challenges, practitioners have integrated tensor, pipeline, expert, and sequence parallelism in training and developed DualPipe to mask communication latency. In inference, “storage-for-compute” architectures such as Mooncake’s heterogeneous prefill/model/attention split, and KTransformers’ compute-intensity-driven offloading enable heterogeneous resource collaboration. Looking ahead, sparse attention mechanisms (e.g., MoBA and NSA) promise to reduce the O\left(n^2\right) complexity of long-sequence processing, offering fresh directions for infrastructure adaptation. This article reviews representative models and system innovations, providing a roadmap for co-designing algorithms and infrastructure.

     

/

返回文章
返回